import numpy as np
import logging
from abc import ABC, abstractmethod
from typing import Dict
# Configure logging for visibility into training and meta-learning processes
logging.basicConfig(level=logging.INFO, format='%(asctime)s [%(levelname)s] %(message)s')
class BaseModel(ABC):
"""Abstract base class for all learning models."""
def __init__(self, name: str):
self.name = name
@abstractmethod
def train(self, data: np.ndarray) -> None:
"""Train the model on data."""
pass
@abstractmethod
def evaluate(self, data: np.ndarray) -> float:
"""Evaluate the model and return a performance score."""
pass
@abstractmethod
def predict(self, data: np.ndarray) -> np.ndarray:
"""Make predictions with the model."""
pass
class SupervisedModel(BaseModel):
def __init__(self):
super().__init__('Supervised')
def train(self, data: np.ndarray) -> None:
logging.debug(f"{self.name}: training on {data.shape} samples.")
# Placeholder for supervised training logic
def evaluate(self, data: np.ndarray) -> float:
perf = float(np.random.rand())
logging.debug(f"{self.name}: evaluation performance {perf:.4f}")
return perf
def predict(self, data: np.ndarray) -> np.ndarray:
return np.random.rand(*data.shape)
class UnsupervisedModel(BaseModel):
def __init__(self):
super().__init__('Unsupervised')
def train(self, data: np.ndarray) -> None:
logging.debug(f"{self.name}: training on {data.shape} samples.")
# Placeholder for unsupervised training logic
def evaluate(self, data: np.ndarray) -> float:
perf = float(np.random.rand())
logging.debug(f"{self.name}: evaluation performance {perf:.4f}")
return perf
def predict(self, data: np.ndarray) -> np.ndarray:
return np.random.rand(*data.shape)
class ReinforcementModel(BaseModel):
def __init__(self):
super().__init__('Reinforcement')
def train(self, data: np.ndarray) -> None:
logging.debug(f"{self.name}: training on {data.shape} samples.")
# Placeholder for reinforcement learning logic
def evaluate(self, data: np.ndarray) -> float:
perf = float(np.random.rand())
logging.debug(f"{self.name}: evaluation performance {perf:.4f}")
return perf
def predict(self, data: np.ndarray) -> np.ndarray:
return np.random.rand(*data.shape)
class RunawayMetaLearner:
"""Meta-learning ensemble that can 'run away' if meta-weights diverge."""
def __init__(self):
# Initialize base models
self.models = [
SupervisedModel(),
UnsupervisedModel(),
ReinforcementModel(),
]
# Start with equal ensemble weights
self.weights = np.array([1/3] * len(self.models), dtype=float)
# Meta-model weights for non-linear adjustment
self.meta_weights = np.random.randn(len(self.models))
# Learning hyperparameters
self.learning_rate = 0.01
self.runaway_threshold = 10.0
def train(self, data: Dict[str, np.ndarray]) -> None:
"""Train each base model and update ensemble/meta weights."""
keys = ['supervised', 'unsupervised', 'reinforcement']
for model, key in zip(self.models, keys):
model.train(data[key])
self._update_weights(data['validation'])
self._check_runaway()
def _update_weights(self, validation_data: np.ndarray) -> None:
# Evaluate each model
performances = np.array([m.evaluate(validation_data) for m in self.models])
total = performances.sum() + 1e-8 # Prevent division by zero
# Update ensemble weights proportionally
self.weights = performances / total
# Meta-learning gradient step
gradient = performances - self.weights
self.meta_weights += self.learning_rate * gradient
logging.info(f"Updated ensemble weights: {self.weights}")
logging.info(f"Meta-weights norm: {np.linalg.norm(self.meta_weights):.4f}")
def _check_runaway(self) -> None:
norm = np.linalg.norm(self.meta_weights)
if norm > self.runaway_threshold:
logging.warning(
f"Runaway detected! Meta-weights norm {norm:.4f} exceeds threshold {self.runaway_threshold}"
)
def predict(self, input_data: np.ndarray) -> np.ndarray:
"""Generate predictions by combining base model outputs."""
# Collect predictions
base_predictions = np.stack([m.predict(input_data) for m in self.models])
# Adjust ensemble weights using non-linear meta-weights
adjusted = self.weights * (1 + np.tanh(self.meta_weights))
adjusted /= adjusted.sum() # Normalize
# Combine predictions
return np.tensordot(adjusted, base_predictions, axes=(0, 0))
if __name__ == '__main__':
# Example usage
training_data = {
'supervised': np.random.randn(100, 10),
'unsupervised': np.random.randn(100, 10),
'reinforcement': np.random.randn(100, 10),
'validation': np.random.randn(20, 10),
}
runaway_ai = RunawayMetaLearner()
runaway_ai.train(training_data)
# Simulate predictions on new data
new_data = np.random.randn(5, 10)
prediction = runaway_ai.predict(new_data)
print("Predictions:", prediction)